DA_DS_AI_ML/Linear Algebra (83) 썸네일형 리스트형 [Khan Academy] Changing coordinate systems to help find a transformation matrix(변환한 좌표계는 변환행렬 찾기에 도움이 된다) 이번시간에는 변환된 좌표계가 변환행렬 찾기에 유용함을 알아본다. 여기 직선 L이 주어졌다. 직선 L을 기준으로 변환 T를 통해 벡터 x와 v를 변환 시켰다. 표준좌표계에서 변환행렬을 구하기 위해선 변환 T에 2차원의 표준 좌표를 넣어준다. (2차원에서의 변환인 경우) 하지만 이는 표준기저좌표계에서 쉽게 변환행렬을 구할 수 있는 것이다. 좌표평면에 그린 변환을 다시 보면, $\vec{v_1}$과 $vec{v_2}$가 직교이며, 이는 두 벡터가 기저벡터일 때 $\vec{v_2}$ 기준으로 이뤄지는 반사라고 볼 수 있다 이전 시간에 봤던 기저 변환에서의 변환 관계를 다시 살펴보자. 이 때 새로운 좌표계에서의 변환행렬을 다르게 구하는 방법을 알아보자. 위에서 주어진 두 벡터를 기저로 하는 좌표계로 변환을 해보자.. [Khan Academy] Alternate basis transformation matrix example part 2(번갈아 생기는 기저변환의 예제 2) 이번시간에는 공식을 통해 기저변환에서의 변환 T를 위한 행렬 D가 올바르게 구해진 것인지 알아본다. 2차원의 기저가 주어지고 이에 대한 변환 행렬, 역행렬, 변환 T가 주어졌다. 이제 벡터 x를 통해 비표준좌표계에서의 변환행렬 D가 올바르게 구해진 것인지 알아본다. 벡터 x로 변환 T를 한 뒤 연산 결과, B에 대한 좌표계로 변환한 벡터 x를 구하였다. 변환 T를 비표준 좌표계에서 나타낸 결과와 비표준 좌표계에서의 벡터 x를 비표준 좌표계에서의 변환 T로 나타내는 구조를 보여준다. 따라서 공식을 통해 구한 D가 올바르다는 것을 알 수 있다. 그렇다면 기저변환을 왜 하는 것일까? 기저 변환은 알맞은 좌표계를 찾는 것이다. 행렬 연산은 행렬이 많고 커질 수록 복잡해 지는데, 이를 기저를 통한 좌표계 변환으로.. [Khan Academy] Alternate basis transformation matrix example (번갈아 생기는 기저의 변환행렬 예제) 이번시간에는 alternate 기저의 변환행렬에 대해 알아본다. 지난 시간까지 알아본 기저 변환과 transfomation에서의 기저 변환 표현에 대한 내용이다. 벡터 x를 비표준 좌표계에서 표현하기 위해서는 기저변환행렬의 역행렬을 곱하였고, 이는 변환 T를 비표준 좌표계에서 표현하기 위해 동일하게 적용되는 방법이었다. 벡터 x를 변환T 연산하기 위해서는 변환 행렬 A를 곱해야 하였고, 비표준좌표계에서의 벡터 x를 비표준좌표계에서의 변환 T로 연산하기 위해서는 변환행렬 D를 구해야 했다. 이전시간에 배운 내용에 의하면 변환행렬 D와 A는 위와 같이 구할 수 있다. 그렇다면 공식을 통해 변환행렬 D를 구해보자. 기저변환행렬과 그의 역행렬이 주어졌을 때 값을 대입해 변환행렬 D를 구하였다. 본 포스팅은 칸아.. [Khan Academy] Transformation matrix with respect to a basis (기저에 대한 변환행렬) 이번시간에는 변환을 기저를 변환하여 나타내는 방법에 대해 알아본다. 기존에 변환을 위해 사용한 변환행렬은 표준기저에서 표현된 것이다. 기저 집합 B가 주어졌다. 벡터 x를 B에 대한 값으로 변환하는 것 처럼 변환 T(x)도 B에 대한 값으로 변환해 나타낼 수 있다. 이 때 변환 행렬은 B에 대한 값으로 바뀐 변환행렬 D가 된다. 행렬 C가 주어지고, 이 행렬에 역행렬이 존재할 경우 벡터 x와 벡터 x를 B에 대한 값으로 변환하였을 때 값을 자유재로 구할 수 있게 된다. 이 때 변환 T(x)는 $A\vec{x}$와 동일하기 때문에 B에대한 값으로 변환 T를 바꾸는 값에 $A\vec{x}$를 대신 넣고, 이 때의 벡터 x를 행렬 C와 B에 대한 벡터 x의 값을 곱한 값으로 바꿀 수 있다. 여기서 마지막에 정.. [Khan Academy] Invertible change of basis matrix (기저변환행렬의 역행렬) 이번시간에는 기저변환행렬의 역행렬을 통해 기저벡터로 벡터를 표현하는 방법을 알아본다. 가정은 기저변환행렬 C의 역행렬이 존재한다는 것이다. 이는 다음과 같은 의미를 가진다 1. C는 정방행렬이다 =행렬의 열의 차원이 전체 차원 수와 같아야 한다 =전체 차원수와 같은 기저벡터 수를 가진다. 2. 모든 벡터가 선형독립이다. 따라서 행렬 C는 집합 B로부터 나왔기 때문에 집합 B의 기저 벡터는 n차원의 기저벡터임을 알 수 있다. 행렬 C의 역행렬이 존재한다는 것과 B의 span이 n차원과 같다는 것은 서로 성립한다. $C[\vec{a}]_B=\vec{a}$식 양 변에 C의 역행렬을 곱해주면 가중치를 구할 수 있다. 이를 보이기 위해 2차원에서 두 벡터가 주어지고, 이 벡터는 2차원의 기저이다. 이를 통해 기저.. [Khan Academy] Change of basis matrix (기저변환행렬) 이번시간에는 좌표계를 변환할 수 있는 기저변환행렬에 대해 알아본다. 이전시간에는 벡터 a를 B의 기저의 가중치로 나타낼 수 있다는 것을 배웠다. 이 때 n x k 행렬 C가 기저벡터를 나타내고, 벡터 a의 선형결합을 위해 사용한 가중치의 곱을 이용해 벡터 a를 나타낼 수 있다. 이 과정을 통해 벡터 a를 표존기저(좌표)로 표현가능하며, 이 때 행렬 C는 기저변환행렬이라고 부른다 두 벡터가 주어졌고, 두 벡터를 기저로 하는 집합 B가 있다. 이 때 벡터 a의 집합 B에 대한 좌표는 (7, -4)라고 하자 (가중치) 각 벡터에 가중치를 곱해 벡터 a를 나타낼 수도 있지만, 기저변환 행렬과 가중치의 곱으로 나타낼 수 있다. 이번에는 기저변환행렬과 벡터가 주어졌을 때 가중치를 구해보자. 첨가행렬을 통해 기약행사.. [Khan Academy] Coordinates with respect to a basis (기저 좌표) 이번시간에는 기저로 좌표를 표시하는 방법에 대해 알아본다. V가 n차원의 부분공간이고, B가 기저벡터들의 집합이며 벡터 a가 부분공간 V의 원소라하자 벡터 a를 B의 기저벡터들의 선형변환으로 나타낼 수 있다. 이 때 B의 요소들로 벡터 a를 나타낼 수 있고, 벡터 a를 B의 기저벡터로 표현할 수 있다. $\vec{v}_1$과 $\vec{v}_2$가 주어졌고, B는 2차원의 기저벡터의 집합이다. 예를 들어 벡터 a가 1번 벡터를 3배, 2번 벡터를 두 배한 값의 선형 결합으로 나타낸다면 위와 같이 (8,7)로 나타낼 수도 있다. 이번에는 basis로 나타내는 새로운 좌표 (3,2)를 얻게 된다. 좌표는 (첫번째 기저벡터의 가중치, 두 번째 기저벡터의 가중치)로 나타낼 수 있다. 즉, 각 기저벡터의 수가 좌.. [Khan Academy] Another least squares example (최소제곱법 예시 2) 이번시간에는 또 다른 최소제곱법 예시를 알아본다. 위와 같이 네 점이 주어졌고, 이점들을 한 번에 지나가지는 못하지만 네 점까지의 거리와 최소가 되는 직선을 구해본다. 우리가 구해야하는 것은 직선이기 때문이 y=mx+b라는 식에서 m과 bㄹ르 구해야한다. 각 점을 직선의 방정식에 대입해 행렬식으로 나타낸다. 최소제곱법을 통한 근사 해를 구하기 위해 필요한 행렬과 벡터를 구한다. $\vec{x}^*$의 요소는 $m^*$과 $b^*$가 된다. 연립방정식으로 두 방정식을 구해보면 근사 m은 $\frac{2}{5}$, 근사 b는 $\frac{4}{5}$가 나오게 된다. 위에서 구한 m과 b를 직선의 방정식에 대입하여 좌표평면위에 나타내게 되면 위와 같이 되며, 이는 네 점으로부터의 거리가 최소가 되는 직선을 그.. 이전 1 2 3 4 ··· 11 다음